Ecological characteristics of small farm land ponds: associations with land-use practices at multiple spatial scales.

Steven DECLERCKa,*, Tom DE BIEa, Dirk ERCKENb, Henrietta HAMPELb, Sofie SCHRIJVERSc, Jeroen VAN WICHELENd, Virginie GILLARDe, Robert MANDIKIe, Bertrand LOSSONf, Dirk BAUWENSg, Stijn KEIJERSc, Wim VYVERMANd, Boudewijn GODDEERISb, Luc DE MEESTERa, Luc BRENDONCKa and Koen MARTENSb

aLaboratory of Aquatic Ecology, KULeuven, Ch. De Beriotstraat 32, 3000 Leuven, Belgium
bRoyal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
cSpatial Applications Division Leuven, Institute for Land and Water Management, KULeuven, Vital Decosterstraat 102, 3000 Leuven, Belgium
dLaboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
eFacultés Universitaires N.D. de la Paix, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
fLaboratory of Parasitology-Parasitic Diseases, University of Liege, Plce du XX Août 7, Bât. A1, 4000 Liege, Belgium
gInstitute of Nature Conservation, Kliniekstraat 25, 1070 Brussels
Corresponding author: Tel.: ++32 16 32 38 38; Fax: ++32 16 32 45 75

E-mail address: Steven.Declerck@bio.kuleuven.be.
Ecological characteristics of small farm land ponds: associations with land-use practices at different spatial scales.

ABSTRACT

Despite their restricted surface area, small farm land ponds often have a high conservation value because they contribute significantly to regional biodiversity and contain rare or unique species. For this reason, the creation of new ponds has become a widely applied practice in many countries. Information on the effects of land use on farm land ponds is very scarce. Farm land ponds differ from larger ponds, lakes and rivers in many aspects and can therefore be expected to be affected by land use via other mechanisms operating at different spatial scales. We here present a study on 126 ponds distributed over the entire territory of Belgium (surface area: 30,500 km\(^2\)). We assessed variables related to turbidity state and vegetation complexity and related them to land use variables assessed at several spatial scales ranging from the pond edge up to 32 km\(^2\) circular areas. According to redundancy analysis, trampling by cattle and percentage cover of nearby crop land were positively associated with turbid state related variables. Conversely, ponds with high coverage by forest in the immediate neighborhood tended to be associated with the clear water state. Multiple regression analysis demonstrated a negative effect of trampling and coverage by crop land on vegetation complexity. Effects of crop lands and forest were strongest at the local scale (< 200 m radius) which indicates that adverse external influences can most efficiently be mitigated at a small scale. Based
on these results we suggest several recommendations for pond construction and conservation.

Key Words: vegetation complexity; turbidity; crops; trampling; cattle; water plant
1. Introduction

Small farm land ponds are often very numerous in agricultural areas. Although created to serve agricultural purposes (e.g., providing drinking water to cattle; irrigation) they are generally considered to be of high conservation value. Despite their small surface area, farm land ponds may contribute significantly to regional biodiversity because they support heterogeneous communities of aquatic organisms and often contain rare or unique species (Oertli et al., 2002; Williams et al., 2004; Nicolet et al., 2004). In many regions, however, this type of ponds is highly threatened due to eutrophication, chemical pollution or physical destruction (Heath and Whitehead, 1992; Boothby, 2003). Despite their abundance, biological importance, and threatened status, there is a general lack of knowledge on the structure, diversity and functioning of these systems, and how they are affected by anthropogenic influences (Wood et al., 2003; Williams et al., 2004).

Small farm land ponds are expected to be different from larger ponds and lakes in several aspects (see also Søndergaard et al., 2005; Scheffer et al., in press). They have a smaller volume to edge ratio, which on the whole leads to a higher proportion of littoral zone, a higher impact of shading effects from surrounding trees and a more direct exchange of matter and organisms with the locally surrounding terrestrial matrix. Furthermore, the mechanisms that create resuspension of sediments (and associated nutrient recycling) in ponds differ from those in lakes. Small ponds have lower wind fetch and most often lack large sediment resuspending benthic fish (Scheffer et al., 2003) while in many regions they may be more affected by the wading of cattle. Small size is
also correlated with shallow depth, which may tend to allow better light conditions for
vegetation, a more intensive benthic-pelagic coupling (Tessier and Woodruff, 2002), and
a higher probability to dry out during summer.

Land use can affect aquatic ecosystems via multiple processes that act at different
spatial scales, ranging from the short-distance local scale to that of entire valleys (Allan et
al., 1997; Johnson et al., 1997; Buck et al., 2004). Consequently, a good knowledge of the
spatial scales at which different processes operate is essential to better understand the
impact of land use practices on the functioning and ecological characteristics of water
bodies, and forms the basis for an efficient integrated catchment management. The
creation of new ponds has become a common practice in many countries (Davies et al.,
2004; Louette and De Meester, 2005; Søndergaard et al., 2005). A good understanding of
the spatial scales at which land use affects ponds is essential for the mitigation of land use
effects on existing ponds and the development of efficient location selection strategies for
the creation of new ponds (Davies et al., 2004).

This study presents the results of a large scale survey on the ecological characteristics
of 126 small farm land ponds that were selected according to a gradient of surrounding
land use intensity within the context of agricultural landscapes. The aims of the study
were to (1) assess some key biotope characteristics of the ponds that quantify turbidity
status (Scheffer, 1998) and structural complexity of the aquatic vegetation; (2) to reveal
the associations between these pond characteristics and different types of land uses, (3) to
identify the scale at which land use influences operate, and (4) to derive
recommendations for management and conservation purposes.
2. Methods

2.1. Study area

Agricultural practices are diverse in Belgium. The northern and central parts of the country (Flanders) are dominated by agricultural landscapes. Forest patches are scarce, fragmented and small, and the land use is generally intensive (predominantly pastures and crop lands with tillage, often combined with intensive cattle raising). In contrast, land use in the southern part of the country (Wallonia) is more extensive and is predominantly characterized by forests and pastures, in addition to crop cultures.

2.2. Study site selection

We surveyed a total of 126 farm land ponds. Because we aimed at studying the association between pond characteristics and land-use practices on a relevant spatial scale, we selected ponds distributed over almost the entire Belgian territory (approx. 30,000 km²; Fig. 1). We mainly focused on small ponds that provide drinking water for cattle. Land use data are typically geographically structured and show a high degree of spatial autocorrelation (Johnson and Gage, 1997). Such spatial structure may seriously impede the study of associations between land-use and ecological features of water bodies. We therefore tried to uncouple land use and geographical position by selecting the study ponds according to an a priori defined spatial design: (1) first, we selected 42 clusters of ponds distributed over the Belgian territory; clusters were chosen such that each cluster contained several ponds that were located within a circular area of
approximately 20 km² and covered a broad gradient in land-use; (2) second, to maximally avoid collinearity between the land-use data and geographical position, we selected three ponds within each cluster along a maximal gradient of surrounding agricultural land use intensity, ranging from intensive use (crop lands), over intermediate (extensive) use to pristine (mostly situated in protected nature areas). Special care was taken that only land use was applied as selection criterion, and not the aspects of the ponds themselves (e.g. macrophyte cover, water transparency).

2.3. Sample collection

The ponds were sampled twice: once during the summer of 2003 (during the second half of July, August or the first half of September) and once during the spring of 2004 (during May or June). On each sampling occasion, we measured pH and conductivity with standard electrodes. Water transparency was not determined with a Secchi disk but with a Snell tube because pond depths were shallow. Depth-integrating water samples were collected in an open water zone of the pond using a tube sampler (length 1.5 m; diameter 75 mm) and kept in the cold (4°C) and dark until further analysis. Contact with vegetation or the bottom substrate was carefully avoided during sampling. We also estimated the percentage cover of seven different combinations of vegetation types, defined as: (1) submerged, (2) floating, (3) emergent, (4) submerged + floating, (5) submerged + emergent, (6) floating + emergent and (7) submerged + floating + emergent. Water depth was measured with a graduated stick along two perpendicular transects at distance intervals of 1 m. The thickness of the silt layer was measured from the profile of sediment cores (2 replicates) taken in the central part of the ponds.
2.4. Sample analysis

The water samples served for the assessment of the concentration of chlorophyll a, nutrients (total phosphorus and nitrates), alkalinity and some major ions (calcium, chloride and sulphate ions, water hardness). Sulphates, chlorides, calcium, alkalinity and hardness were measured following standard methods according to the Hach Water Analysis Handbook (HACH, 1992). Nitrate concentration in GF/F filtered water samples was determined with a Technicon autoanalyser III. Total phosphate concentration was measured with the ascorbic acid method after perchlorate digestion (Murphy and Riley, 1962). Chlorophyll a concentrations were spectrophotometrically determined.

2.5. Vegetation complexity

Because of the physical structure it provides, aquatic vegetation can be considered as a key determinant of biotope complexity within lentic water bodies. Vegetation has repeatedly been shown to mediate trophic interactions between different organism groups (Jeppesen et al. 1997) and is potentially important as a determinant of aquatic biodiversity (Scheffer 1998; Declerck et al. 2005). The dominance of aquatic plants over phytoplankton is strongly dependent on the light regime in the water column and sediment characteristics. Intensive land use practices are a potential source of nutrients, sediments and herbicides, and may thereby have adverse affects on the abundance, complexity and richness of pond vegetations. We therefore quantified vegetation complexity within each pond using three characteristics of the aquatic vegetation: (1) the richness of observed plant taxa (taxonomic resolution: genus level; NOT); (2) the number
of different growth forms present (e.g., submerged, floating, emergent vegetation; NGF),
and (3) the Shannon-Wiener diversity calculated from the cover fractions of eight
different biotope types, i.e. the seven combinations of vegetation types (see Sampling,
above) and the open water zone (SWBT).

2.6. Land use data

Land use cover variables were assessed at seven different spatial scales. The percentage
cover of land use types was estimated for circular areas with center at the location of the
ponds and a radius ranging from 50 m over 100, 200, 400, 800, and 1600 m to a
maximum of 3200 m (corresponding to total surface areas of 0.008, 0.03, 0.125, 0.5, 2, 8,
and 32 km², respectively). The land use types discerned were (1) crop land, (2) meadows
and pastures, (3) forest and (4) urban areas. Coverage data were obtained through the
application of the GIS software package ArcView GIS 3.2a (ESRI, Inc.). For the Flemish
territory, we used topographical raster maps of the National Geographic Institute (1978-
1993; scale: 1/10,000) and the land use coverage database of Flanders (2001; resolution:
15 m). For the Walloon region, topographical and land use data were derived from the
PICC (Projet Informatique de Cartographie Continue; 1995-2000; scale: 1/1000) and
from the soil occupation database of the Walloon region (Direction de l’Observatoire de
l’Biotope et de la Géomatique du Ministère de la Région Walonne;1988-1989; 1/50.000),
respectively.

In addition, we made a visual assessment of nearby crop land presence independently
from the GIS-dataset. This was done in the field at the time of sampling by reporting the
presence or absence of crop land within concentric circles of 10, 20 and 100 m around the
pond. Trampling by cattle was assessed using a simple score system (none, low, intermediate, high or very high degree of trampling of the pond edges; TRAMPLING).

2.7. Data analysis

The summer of 2003 was exceptionally dry; 27 of the 126 ponds dried out during August and September. Data analysis was therefore confined to the remaining 99 permanent ponds that kept water during both sampling periods (i.e., summer 2003 and spring 2004). Preliminary analyses indicated a high degree of correlation between spring and summer values for the majority of the variables. All further analyses were therefore done on the averaged values of the spring and summer data.

Our data analysis attempted to evaluate the effect of different land use types on pond characteristics and to assess at which spatial scales such effects are most prominent. For these analyses, we focused on two types of pond variables: (1) variables that are related to the clear water/turbid state (“CT-variables”) (Scheffer, 1998), and (2) variables related to the vegetation complexity. Standardized PCA-analysis on the entire set of measured pond variables indicated a high degree of collinearity among CT-variables: water transparency, concentration of phytoplankton chlorophyll a, total phosphorus, thickness of the silt layer on the pond sediments, and the percentage of pond surface covered by aquatic vegetation. Due to this high collinearity (Appendix 1) and to avoid problems related to multiple testing, we choose to analyze this entire CT gradient in function of land use rather than performing an analysis for each variable separately. In contrast, variables related to vegetation complexity were analyzed separately.
The association between land use variables and the CT-variables was investigated in four steps. We first explored for spatial patterns in the CT-dataset. Two-dimensional geographical co-ordinates were used to generate the terms of a cubic trend surface regression (Borcard et al., 1992). Using the manual forward selection procedure of CANOCO v4.5 (Lepš and Šmilauer, 2003), we constructed a most parsimonious spatial redundancy analysis model (RDA) for the CT-dataset (Borcard et al., 1992).

Secondly, we identified the spatial scales at which different land use variables show the strongest association with the CT-variables. For each of the seven spatial scales, we assessed the contribution of the percentage cover of each land use type to the variation in the CT-dataset with separate RDA-analyses. We also evaluated the contribution of crop presence in the immediate vicinity of ponds as determined from visual observations. TRAMPLING and the variables of the spatial model were specified as co-variables in all these analyses to partial out their effects.

Third, we aimed at estimating the independent contribution of each variable category to the variation in CT-variables. This was done for the spatial scale at which the strongest effects of land use variables were found in the previous analyses (i.e. the spatial scale corresponding with a 100 m-radius circular area). An RDA-model was constructed of the variables TRAMPLING, the spatial variable Y^3 and the four land use cover variables. The contribution of each variable category to the variation in the CT-dataset was assessed with variation partitioning (Borcard et al., 1992).

Finally, we tried to identify the subset of explanatory variables best explaining the CT-dataset. For this a forward selection procedure was performed on the entire set of explanatory variables corresponding with all spatial scales (10 to 3200 m radii). For each
of the variables retained, we estimated both the marginal and conditional effects on the CT-variables.

The three vegetation complexity variables were analyzed with multiple regression analysis. In analogy to the RDA-models, a most parsimonious spatial model was first constructed for the vegetation complexity variables using forward variable selection. The significance of the association between vegetation complexity and individual land use types was then evaluated upon inclusion of these spatial variables in the multiple regression models.

The CT-variables were logarithmically transformed prior to analysis. Land use variables were logit-transformed, whereas crop presence/absence and TRAMPLING remained untransformed. All RDA-analyses were carried out with the program CANOCO v4.5 (Lepš and Šmilauer, 2003). Significance levels were assessed with 999 random Monte-Carlo permutations (n = 999; full model). Multiple regression analyses were performed with the software package STATISTICA v6.

3. Results

3.1. Pond characteristics

The studied ponds were generally very small and shallow. The surface area of the 99 permanent ponds ranged between 12 and 3674 m² (Table 1) and 90% of the ponds were smaller than 400 m². Maximum depth averages ranged between 0.18 and 1.6 m. The set of ponds displayed a large variability for the studied variables (see Table 1) and
represented both turbid hypertrophic ponds devoid of water plants and with high amounts of phosphorus, chlorophyll a and silt, as well as vegetated ponds with clear water.

3.2. Pond characteristics and land use

Partial standardized RDA analyses revealed significant explanation of variation in the CT-variable dataset by the percentage cover of forest and crop land (Fig. 2). There were no significant effects of both urbanized area and pastures. The level of statistical significance of this association strongly depended on the spatial scale considered (Fig. 2). The effect of forest cover was significant when estimated for circular areas with surfaces of 0.008, 0.03, 0.125, and 0.5 km2 around the ponds (radii of 50, 100, 200, and 400 m, respectively) but not for larger areas. The effect of percentage cover of crop lands was significant for surface areas with radii of 50 and 100 m. Both land use variables explained most variation for areas with a radius of 100 m. The maximum amount of variation in CT-variables explained by forest land (4%) was higher than that for crop land (2.3%). Use of crop presence/absence data for areas with 10, 20 and 100 m radii resulted in similar percentages of explained variation as for forest cover data (approximately 3.5%; Fig. 2).

A RDA-model with the variables TRAMPLING, the spatial variable Y^3 and the four land use cover variables derived from 100m-radius areas, was highly significant ($p = 0.001$) and explained in total 21% of the variation in the CT-dataset (Table 2). According to variation partitioning performed on this model, the four land use variables jointly contributed 34% of this total explained variation ($p = 0.019$; Table 2). The variable TRAMPLING alone was responsible for a highly significant contribution of 41% to the
total explained variation ($p = 0.001$). Latitude (Y^3) explained 11% of this variation ($p = 0.036$), whereas the variation explained in common amounted to 14%.

Application of a forward selection procedure on the entire set of explanatory variables derived for all spatial scales (10 to 3200 m radii) retained four variables: TRAMPLING, percentage forest cover in a 200 m-circular area, crop presence/absence in a 20 m-circular area, and the spatial variable Y^3 (Table 3). TRAMPLING and crop presence/absence were negatively associated with clear water conditions (Fig. 3a,b) whereas forest cover showed a positive association with clear water conditions (Fig. 3c). The CT-variables showed a significant association with latitude: ponds tended to become increasingly turbid towards the north of the study area (Fig. 3d).

3.3. Vegetation complexity and land use

Number of vegetation growth forms (NGF) was the only index of vegetation complexity that was related to one of the spatial variables (Y^3; $r = 0.21, p = 0.038$) and to the presence or percentage cover of adjacent crop land (Fig. 4). NGF was significantly related to crop land presence/absence within 20 and 100 m radius areas, to crop land cover within 0.125 km2 areas and to crop land cover within 0.03 and 0.5 km2 areas upon exclusion of the spatial variable Y^3 from the regression model. With the exception of associations between urban area in 2 and 40 km2 areas and growth form number (r_p-values > 0.2; p-values < 0.05), there were no other associations between variables of land use cover and vegetation complexity.

Of all land use variables, TRAMPLING had the highest impact on vegetation complexity. TRAMPLING showed significant, negative correlations with all three
vegetation complexity variables and had the highest standardized regression coefficients in multiple regression models on vegetation complexity variables (Table 4).

4. Discussion

Our study of 99 small farm land ponds spread over the Belgian territory revealed significant associations between surrounding land use and pond variables that are related to turbidity status or vegetation complexity. Ponds frequently visited by cattle or located near crop land were characterized by relatively high values of turbidity related variables (e.g., total phosphorus, chlorophyll a concentrations, silt on the sediments), lower water transparency and sparser aquatic vegetation. Conversely, ponds at locations with high forest cover showed the opposite pattern. Ponds with high disturbance by cattle also contained a lower number of abundant water plant taxa, a lower number of water plant growth forms and a lower diversity of aquatic vegetation types. Effects of land use cover were less pronounced on these indices of vegetation complexity, although we also observed a negative association between crops in the immediate vicinity of ponds and the number of plant growth types.

Degree of trampling by cattle seemed to have the highest impact on both turbidity and vegetation complexity related variables. The effect of cattle on permanent ponds probably operates via mechanisms that differ intrinsically from those that govern the terrestrial zones of temporary wetlands (e.g. Marty, 2004) and probably resemble more those exerted by large benthic fish on ponds and lakes (Scheffer et al., 2003). Cattle can directly increase turbidity of ponds by resuspending sediments and increasing bank
erosion. Cattle may also indirectly contribute to increased water turbidity by stimulating phytoplankton growth through an increased nutrient input via defecation and urination and via an enhancement of internal eutrophication (nutrient release from the sediments). As a side effect, this increased turbidity can enhance dominance of phytoplankton over water plant vegetations through increased light limitation. Finally, the abundance, taxon richness and structural complexity of water plant vegetations may also be adversely affected by cattle through direct physical damage as a result of trampling and grazing. Although we observed only negative effects of cattle on aquatic vegetation, we cannot exclude the possibility that a moderate disturbance by cattle may promote botanic diversity in individual cases, for example in ponds where the vegetation tends to be dominated by one single invasive species.

The negative association between the proportion of crop land and the ecological quality of ponds is in line with the results of former studies on rivers, lakes and man-made reservoirs (Jones et al., 2004). Crop agriculture, especially row-crop farming with frequent tillage and the intense application of fertilizers, leads to high soil erosion and high nutrient and sediment export rates. This may ultimately result in increased nutrient loads adversely affecting water plant cover and richness in favor of phytoplankton. Conversely, clear water state related variables of ponds tended to be positively associated with the proportion of forest cover. This result was not an artifact resulting from the negative correlation between forest cover and crop land cover, because the forest signal remained significant upon inclusion of crop land cover as co-variable in the RDA-models. The effect of forest cover may result from reduced wind action on the surface of the ponds, limiting resuspension of sediments. Although important in lakes,
however, wind resuspension may perhaps not be so important in the type of small-sized water bodies studied by us because of their lower wind fetch. More likely, forest cover may be correlated with the intensity of exploitation within land use categories. Agricultural land use (fertilizer and herbicide use, stock density of cattle) on crop lands and pastures is possibly less intensive in highly forested areas than in areas with low forest cover. The presence of forest may then indicate an overall lower intensity of agricultural activity in the area.

The amount of variation in CT-variables and vegetation complexity variables that was explained by the percentage cover of crop land and forest showed a strong decline with increasing spatial scale. Crop land presence/absence data in the immediate vicinity of ponds as assessed by visual observation (circular areas with radii up to 100 m) explained more variation than percentage cover data obtained by GIS application. The percentage of land covered by crops explained more variation in CT-variables when derived for a 100 m-radius area than for larger spatial scales. For forest cover the effect was strongest for a 200 m-radius area. These results suggest that the most important land use effects on ponds operate at relatively small rather than at large spatial scales, and that inputs of nutrients and possibly also pesticides mainly originate from local surface water run-off rather than from atmospheric deposition or major ground water flows. It should, however, be noted that the variation in the estimates of the different types of land use cover decreased with increasing spatial scale. A reduction of this variation may also to some extent have hampered the detection of land use effects at these larger spatial scales.

Although highly significant, the amount of variation in CT- and vegetation complexity variables explained by land use variables was rather low. Because of their isolation,
ponds are very heterogeneous systems. Apart from land use, they can be influenced by a multitude of other factors as well (e.g., management history, geological context, water chemistry, hysteresis). These factors may create a lot of variation that acts as noise when we want to extract the impact of general land use related patterns. The explanatory power of the land use variables may also have been weakened because of several additional reasons. First, land use can have long-lasting effects on ecosystems, whereas we used rather recent land use data which do not necessarily reflect historic effects. Indeed, Harding et al. (1998), for example, have convincingly shown that past land use may serve as a better predictor of the present state of ecosystems than recent land use data. Secondly, we used rather coarse land use categories, each of which may cover widely different practices. The category “crops”, for example, includes different types of cultures that require different levels of treatment intensity (e.g., corn versus wheat). These considerations and the fact that the associations between land use practices and some crucial pond characteristics in our study were still statistically significant and conform with the expectations based on insights yielded by former studies (Jones et al., 2004), suggest that the extent of the impact of land use in our study may have been underestimated.

5. Recommendations with respect to management

Our results have important implications with respect to the management of existing ponds and the creation of new ponds. First, the observations indicate that the conservation of clear water and high vegetation complexity in both existing and newly created ponds can be successful, even in landscapes dominated with crop lands. Although we have not
differentiated between different types of crop land, we expect this to be especially true if
the agricultural practices exercised at these crop lands are of low or moderate intensity.
Furthermore, in contrast to the situation in rivers, and probably also in lakes, efforts to
reduce adverse external land use influences might already be effective when applied at a
local scale (e.g., by the adjustment of adjacent land use, the use of buffer zones). The
creation of new ponds should preferentially take place at a distance of more than 200 m
away from crop land. The access of cattle is best restricted or impaired although we
perceive some dilemma with respect to this issue. Most ponds of the type we studied
were originally created and maintained as drinking ponds for cattle. Enforced exclusion
of cattle from ponds may eliminate their agro-economical reason of existence and may
lead to their degradation on a longer term due to lack of maintenance. In the larger ponds,
restriction of access for cattle to a limited section of the pond may reduce the impact of
cattle. Alternative sources of water supply for cattle (e.g., through mechanic drinking
infrastructure) may also help in fulfilling the needs of farmers but external financial
support will most often be required to ensure a sustained maintenance of the ponds.

With the CT- and vegetation complexity variables we aimed to evaluate the effects of
land use on variables that reflect important ecological characteristics of ponds. These
variables should, however, not necessarily be considered surrogate variables for
biodiversity. Although there are many reasons to believe that the potential for local
biodiversity is higher in the presence of an abundant and structurally complex aquatic
vegetation, recent studies have suggested that concordance in biodiversity among
different groups of aquatic organisms generally tends to be low (Declerck et al., 2005). If
the conservation management of ponds aims at increasing or maintaining the biodiversity
of specific groups of organisms, it is still to be preferred to evaluate the effect of land use and conservation measures on data collected for these target groups. Furthermore, in cases where groups of ponds can be managed at a regional level, the attention should be focused on β- and γ-diversity rather than on α-diversity (see Williams et al., 2004).

Despite the negative effects of cattle on water transparency and vegetation complexity, the access of cattle to a subset of these ponds may even contribute to an increased diversity of pond biotopes at the regional scale.

Acknowledgements

This study has been financed by the Belgian federal government (PODO II-program) in the framework of the BELSPO-project “Integrated Management Tools for Water Bodies in Agricultural Landscapes” (MANSCAPE; EV/01//29E) and by EU IP project ALARM (GOCE-CT-2003-506675). We wish to cordially thank Jelle Quartier who helped in the sampling, and the numerous land owners and farmers that have constructively co-operated in allowing us access to the ponds and in providing us with some necessary background information. S. Declerck is a post-doctoral fellow of the Fund for Scientific Research – Flanders.

References

Theoretische und Angewandte Limnologie Verhandlungen 19, 1-15.

Jeppesen, E., Søndergaard, Ma., Søndergaard, Mo., Christoffersen, K., (Eds.) 1997. The
structuring role of submerged water plants in lakes. Ecological Studies Series 131,
Springer, New York, USA.

Johnson, L.B., Gage S.H., 1997. Landscape approaches to the analysis of aquatic
ecosystems. Freshwater Biology 37, 113-132.

water chemistry in midwestern stream ecosystems. Freshwater Biology 37, 193-208.

variables and morphology on nutrients in Missouri reservoirs. Canadian Journal of
Fisheries and Aquatic Sciences 61, 1503-1512.

photosynthetic parameters in reservoirs along a gradient of watershed land use.
Limnology and Oceanography 48, 608-617.

Louette, G., De Meester, L., 2005. High dispersal capacity of Cladoceran zooplankton in

Conservation Biology 19, 1626-1632.

Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of

Roth, N.E., Allan, J.D., Erickson, D.L., 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11, 141-156.

detection of land-use effects on morphology, vegetation and macroinvertebrate
communities of grassland streams. Freshwater Biology 49, 448-462.

Verschuren, D., Johnson, T.C., Kling, H.J., Edgington, D.N., Leavitt, P.R., Brown, E.T.,
Victoria, East Africa. Proceedings of the Royal Society of London Series B-Biological
Sciences 269, 289-294.

Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural

Wood, P.J., Greenwood, M.T., Agnew, M.D., 2003. Pond biodiversity and biotope loss in
the UK. Area 35, 206-216.
Figure captions

Fig. 1 - Map of Belgium with the location of sampled pond clusters (circular symbols). Each cluster contained three small farm land ponds that were located within a circular area of approximately 20 km2. The ponds within clusters were selected along a gradient of land use intensity, ranging from relatively natural areas to areas with intensive agricultural activities.

Fig. 2 - Contribution of major land use variables to the total variation in CT-variables in function of spatial scale as estimated from partial RDA-models (with the spatial variable Y^3 and TRAMPLING as co-variables). Filled symbols: land use cover estimated via GIS-applications using land use maps. Open symbols represent crop land presence/absence as observed from visual inspection. *: $p < 0.05$; **: $p < 0.01$.

Fig. 3 - Conditional effects of land use variables and latitude on the CT-variables (cf. Table 3). The Y-axes of the graphs represent the sample scores of the first principal axis of a partial standardized PCA performed on the CT-variables (except Fig. 3d for which an unconstrained PCA was applied). Positive PCA-scores indicate turbid conditions, whereas negative PCA-scores clear water conditions. TRAMPLING: degree of trampling by cattle (Fig. 3a); CROP P/A (20 m): presence or absence of crop land in the immediate vicinity of the pond (radius of circular area: 20 m; Fig. 3b); FOREST (200 m): percentage of land covered by forest in a 200 m radius circular area around the pond (Fig. 3c); Y^3:
variable of the spatial model, with Y being latitude (Fig. 3d). Note the logit-scale of
forest cover in Fig. 3c. Error bars equal twice the standard error of the mean.

Fig. 4 - Partial correlation coefficients of the three vegetation complexity variables with
crop land in function of spatial scale. The effects of TRAMPLING and the spatial
variable Y^3 were partialled out, except for NGF, for which results are also shown without
correcting for Y^3. Filled symbols represent crop land cover as estimated from GIS-
applications using land use maps. Open symbols represent crop land presence/absence as
observed from visual inspection in the field. *: $p < 0.05$.
Table 1. Summary statistics and variable abbreviations for morphometric variables and clear water/turbid state related variables (CT-variables) assessed for 99 Belgian farm land ponds.

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Minimum</th>
<th>25 percentile</th>
<th>75 percentile</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphometric variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface area (m²)</td>
<td>AREA</td>
<td>147</td>
<td>12</td>
<td>62</td>
<td>265</td>
</tr>
<tr>
<td>Depth maximum (m)</td>
<td>DEPTH</td>
<td>0.71</td>
<td>0.18</td>
<td>0.46</td>
<td>0.92</td>
</tr>
<tr>
<td>CT-variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparency (m)</td>
<td>TRANSP</td>
<td>0.21</td>
<td>0.4</td>
<td>0.15</td>
<td>0.28</td>
</tr>
<tr>
<td>Total phosphorus (mg P L⁻¹)</td>
<td>PTOT</td>
<td>0.83</td>
<td>0.07</td>
<td>0.44</td>
<td>2.08</td>
</tr>
<tr>
<td>Chlorophyll a (µg L⁻¹)</td>
<td>CHLa</td>
<td>21</td>
<td>1</td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>Silt (m)</td>
<td>SILT</td>
<td>0.28</td>
<td>0</td>
<td>0.13</td>
<td>0.50</td>
</tr>
<tr>
<td>Vegetation cover (%)</td>
<td>VEGCOV</td>
<td>55</td>
<td>0</td>
<td>15</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 2. Variation partitioning on an RDA-model relating CT-variables with major categories of land use cover, degree of trampling by cattle and latitude (Y^3, with Y being latitude). The land use cover variables in this model represent 0.03km2 circular areas around the ponds (radius: 100 m).

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Co-variables</th>
<th>% of total variation</th>
<th>% of explained variation</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire model</td>
<td></td>
<td>21</td>
<td>3.988 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROPS, FOREST, URBAN, PASTURE, TRAMPLING, Y^3</td>
<td>7.2</td>
<td>34</td>
<td>2.065 0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAMPLING</td>
<td>CROPS, FOREST, URBAN, PASTURE, Y^3</td>
<td>8.6</td>
<td>41</td>
<td>9.747 0.001</td>
<td></td>
</tr>
<tr>
<td>Y^3</td>
<td>CROPS, FOREST, URBAN, PASTURE, TRAMPLING</td>
<td>2.4</td>
<td>11</td>
<td>2.705 0.036</td>
<td></td>
</tr>
<tr>
<td>Explained in common</td>
<td></td>
<td>2.8</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Marginal and conditional effects of land use and latitude (Y^3, with Y being latitude) on CT-variables as determined by standardized RDA-analysis. Only land use and spatial variables retained by the forward selection procedure are included in the model.

Entire RDA-model: Total amount of explained variation: 20%; $F = 5.870; p = 0.001$.

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Marginal Effects</th>
<th>Conditional effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of total variation</td>
<td>F</td>
</tr>
<tr>
<td>TRAMPLING</td>
<td>10.9</td>
<td>11.68</td>
</tr>
<tr>
<td>FOREST (200 m)</td>
<td>5.8</td>
<td>5.83</td>
</tr>
<tr>
<td>CROP P/A (20 m)</td>
<td>5.3</td>
<td>5.37</td>
</tr>
<tr>
<td>Y^3</td>
<td>3.6</td>
<td>3.55</td>
</tr>
</tbody>
</table>

FOREST (200 m): percentage of land covered by forest in a 200 m radius circular area around the pond; CROP P/A (20 m): presence or absence of crop land in the immediate vicinity of the pond (radius of circular area: 20 m).
Table 4. Multiple regression analysis results with the three vegetation complexity variables as dependent variables and trampling by cattle, percentage cover of crop land and latitude (Y^3, with Y being latitude) as independent variables.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>β</th>
<th>Std.Err.</th>
<th>t (91)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of growth forms</td>
<td>Intercept</td>
<td>11.95</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAMPLING</td>
<td>-0.361</td>
<td>0.096</td>
<td>-3.76</td>
</tr>
<tr>
<td></td>
<td>CROPS (200 m)</td>
<td>-0.208</td>
<td>0.103</td>
<td>-2.01</td>
</tr>
<tr>
<td></td>
<td>Y^3</td>
<td>-0.105</td>
<td>0.103</td>
<td>-1.02</td>
</tr>
<tr>
<td>Entire model: $R^2 = 0.19$; $F (3.91) = 7.05$; $p < 0.001$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observed taxa</td>
<td>Intercept</td>
<td>9.25</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAMPLING</td>
<td>-0.318</td>
<td>0.101</td>
<td>-3.17</td>
</tr>
<tr>
<td></td>
<td>CROPS (200 m)</td>
<td>-0.077</td>
<td>0.109</td>
<td>-0.71</td>
</tr>
<tr>
<td></td>
<td>Y^3</td>
<td>-0.039</td>
<td>0.108</td>
<td>-0.36</td>
</tr>
<tr>
<td>Entire model: $R^2 = 0.11$; $F (3.91) = 3.63$; $p< 0.015$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shannon diversity in biotope types</td>
<td>Intercept</td>
<td>8.21</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAMPLING</td>
<td>-0.224</td>
<td>0.104</td>
<td>-2.17</td>
</tr>
<tr>
<td></td>
<td>CROPS (200 m)</td>
<td>0.023</td>
<td>0.112</td>
<td>0.20</td>
</tr>
</tbody>
</table>
\[Y^3 \quad -0.029 \quad 0.111 \quad -0.26 \quad 0.797 \]

Entire model: \(R^2 = 0.05; \ F (3, 91) = 3.63; \ p < 0.17 \)

1 **CROPS (200 m):** percentage of land covered by crops in a 200 m radius circular area around the pond.
Fig. 2

Explained variation (%) vs. Radius of circular areas around pond (m)

- Forest
- Crop land
- Pasture
- Urban
- Crop land

Note: The diagram shows the explained variation (%) for different land use categories as a function of the radius of circular areas around a pond. Significant differences are indicated by asterisks: * for p < 0.05, ** for p < 0.01.
Fig. 3
Fig. 4

Radius of circular area around pond (m)

Partial correlation coefficient (r_p)

-0.3
-0.2
-0.1
0.0
0.1

SWBT
NGF, Y_3 in model
NGF, Y_3 not in model
NOT
NGF

-0.3
-0.2
-0.1
0.0
0.1

0 500 1000 1500 2000 2500 3000 3500

NOT

Fig. 4

1 2
APPENDIX 1

Results of standardized Principal Components Analysis on variables related to the clear water/turbid state of ponds (CT-variables).

Results of standardized Principal Components Analysis on CT-variables. TRANSP: water transparency as measured with Snell tube; PTOT: total phosphorus content of water column samples; CHLa: chlorophyll concentration representing phytoplankton; VEGCOV: total fraction of pond surface covered by vegetation (submerged + floating + emergent); SILT: total thickness of the silt layer in the middle of the pond.

<table>
<thead>
<tr>
<th></th>
<th>PCA1</th>
<th>PCA2</th>
<th>PCA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigen values</td>
<td>0.49</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>Loadings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSP</td>
<td>-0.85</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>PTOT</td>
<td>0.69</td>
<td>0.06</td>
<td>0.68</td>
</tr>
<tr>
<td>CHLa</td>
<td>0.77</td>
<td>0.21</td>
<td>-0.04</td>
</tr>
<tr>
<td>VEGCOV</td>
<td>-0.66</td>
<td>-0.42</td>
<td>0.41</td>
</tr>
<tr>
<td>SILT</td>
<td>0.46</td>
<td>-0.84</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

Biplot of the standardized Principal Components Analysis on the CT-variables.